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Abstract 

This study addresses the energy crisis in Ecuador’s Coastal region, 

hypothesizing a structural insufficiency in the regional power sys-

tem’s generation capacity. The research proposes an analysis of 

Level 1 reliability indices to identify critical points within the elec-

trical system and prioritize strategic infrastructure investments. The 

methodology integrated a review of technical data provided by 
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CENACE (National Energy Control Center) and probabilistic mod-

eling using Python, assessing the relationship between installed ca-

pacity, real demand, and operational vulnerabilities. By applying 

these indices, risks such as the system’s loss of load probability and 

its economic impact were quantified, providing a technical founda-

tion for transitioning toward a diversified and efficient energy ma-

trix. Based on the results, a power system improvement framework 

was proposed, focusing on modernizing thermal plants, expanding 

renewable energy integration, and implementing targeted invest-

ment policies in underserved areas. 

Keywords: Power system reliability, LOLE, generation ade-

quacy, power system planning.  

 

1 Introduction 

Recent years, Ecuador has faced a growing energy challenge 

marked by a steady increase in electricity consumption especially in 

the coastal region, which represents the highest share of national 

electricity demand [1]. This surge in consumption has contributed to 

a persistent energy crisis, leading to frequent disruptions in the in-

terconnected power system and intermittent electricity supply across 

multiple provinces. The structural fragility of the national energy 

matrix has placed pressure on thermal generation, which dominates 

the coastal zone with nearly 79.9% of installed capacity [2]. 

To fully understand and address these challenges, quantitative 

analysis of power system reliability has become essential. Reliabil-

ity evaluation plays a crucial role in planning and operation, as it not 

only reflects the system’s ability to meet demand under uncertain 

conditions but also influences operational economics and user satis-

faction [3]. Moreover, reliability indices provide decision-makers 

with key insights for long-term planning, infrastructure investment, 

and risk mitigation strategies [4]. 
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While previous studies have explored Ecuador’s national electri-

cal grid and its overall vulnerability [5], [6] there remains a lack of 

detailed analyses focusing on regional systems particularly in 

coastal zones where energy supply risks are heightened by environ-

mental variability and resource intermittency. The integration of re-

newable energy in these areas, including solar, wind, and tidal 

sources, holds promise for enhancing system sustainability, but also 

introduces significant uncertainty in generation patterns. 

Level 1 reliability metrics such as Loss of Load Probability 

(LOLP), Loss of Load Expectation (LOLE), and Expected Energy 

Not Supplied (EENS) offer a standardized framework to assess the 

performance and security of generation systems. These indices are 

critical for evaluating the probability and magnitude of power sup-

ply interruptions in systems with high penetration of variable renew-

ables [7]. In the Ecuadorian coastal context where hydroelectric re-

sources are geographically limited and seasonally unreliable these 

metrics are invaluable for understanding system behavior and plan-

ning appropriate mitigation strategies. 

Coastal generation systems are exposed to dynamic conditions 

due to the variability of natural energy inputs, such as wind intensity, 

solar irradiation, and tidal forces. These fluctuations can create chal-

lenges for grid balancing, especially when legacy infrastructure is 

not designed to accommodate intermittent resources. Moreover, the 

operational integration of renewable sources requires advanced grid 

monitoring and control capabilities to ensure security margins and 

minimize the risk of outages [8], [9]. 

This study presents a comprehensive technical evaluation of 

Level 1 reliability metrics in Ecuador’s coastal power generation 

system. Using a combination of probabilistic modeling approaches 

including Monte Carlo simulation and Markov chain analysis, the 

paper explores system vulnerability under different operating con-

ditions and generation profiles. These methods have been widely 

recognized for their ability to simulate the stochastic behavior of re-

newable energy sources and component failures [10], [11]and have 

demonstrated effectiveness in applications such as the IEEE 39-bus 

test system with integrated photovoltaic and wind units [12]. 
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Markov models further enhance the understanding of system dy-

namics by modeling availability patterns for hybrid energy sources. 

Studies have demonstrated their utility in the design and evaluation 

of microgrids, especially in coastal regions where hybrid configura-

tions improve reliability and enable distributed control  

Real-world case studies continue to highlight the value of these 

methodologies. For instance, a study in Washington State assessed 

the impact of tidal energy integration on feeder-level reliability and 

found significant improvements in resilience during high-impact, 

low-frequency events [13]. Similarly, research focused on the Santa 

Elena region of Ecuador demonstrated that the addition of solar pho-

tovoltaic systems can effectively complement hydro resources and 

reduce technical losses in coastal grids [10], [14] 

Given the increasing exposure of coastal systems to climate-re-

lated stressors, the concepts of resilience and robustness are gaining 

attention in energy planning. The adoption of microgrids and hybrid 

renewable systems has been proposed to improve supply continuity 

and isolate failures during disturbances, contributing to the long-

term sustainability of vulnerable coastal zones [15]. 

This paper aims to fill the gap in regional reliability studies by 

providing a detailed analysis of Level 1 reliability metrics in Ecua-

dor’s coastal power generation sector. The findings are intended to 

support engineers, operators, and policymakers in developing more 

resilient energy strategies that accommodate the realities of renew-

able variability and growing demand. 

2 Methodology 

Data Collection  

Installed Generation Unit Data 

The energy infrastructure of Ecuador's coastal region comprises a 

combination of renewable and non-renewable electricity generation 

technologies, geographically distributed across different provinces 

and cantons. The collected data covers 139 generation units from 
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various plant types (hydraulic, thermal, photovoltaic, and biomass), 

including information on installed capacity, effective capacity ob-

tained from [1], and FOR values from [16]. This analysis aims to 

identify technical and geographical patterns relevant to the reliabil-

ity indicators to be obtained in this research. 
 

Table 1. Existing plants in the coastal region 

Plant 

Type 

Quan-

tity 

Total Nominal 

Power (MW) 

Total Effective 

Power (MW) 

% 

Share 

Thermal 111 1,824.54 1,608.55 79.86 

Hydraulic 14 525.92 524.55 10.07 

Photovoltaic 12 11.48 11.47 8.63 

Biomass 2 114.50 108.80 1.44 

 

 

As can be seen in Table 1, the distribution of power plants shows 

a clear predominance of thermal sources. 

Renewable energy sources represent a small portion compared to 

fossil fuel-based generation. However, when comparing installed 

capacity versus effective capacity, thermal plants show approxi-

mately 11.83% of their available capacity remains undispatchable, 

while renewable sources average only 1.77% undispatchable power. 

 

Technical Characterization of Units by Technology 

Table 2 details the installed generation units classified by technol-

ogy subtype. The analysis specifically examines the gap between 

nominal and effective power across all units.  

Internal combustion engine (ICE) technology dominates in quan-

tity, representing 62.59% of total system units. However, this tech-

nology shows the largest discrepancy (12.96%) between installed 

and effective capacity. 
 

Table 2. Classification of coastal region power generation units according to energy con-

version technology 

Technology Units Nominal 

Power [MW] 

Effective 

Power [MW] 

Non-Oper-

ational 



 

Evaluation of Reliability Metrics in Coastal Ecuador 

362 

 

Capacity 

Percentage 

[%] 

Reservoir 

Hydro 

5 255.20 255.00 3.60 

Run-of-

River 

9 270.72 269.55 6.47 

Steam Tur-

bine 

7 560.50 526.80 5.04 

Gas Tur-

bine 

19 746.70 640.60 13.67 

Internal 

Combustion 

Engine (ICE) 

87 631.84 549.95 62.59 

Photovol-

taic 

12 11.48 11.47 8.63 

 

Installed Capacities  

With 2,376.44 MW installed capacity and 2,153.37 MW effective 

capacity, the regional energy system achieves a 90.61% capacity 

factor, indicating efficient utilization of installed resources in most 

generation plants regarding dispatch. Nevertheless, the nominal-ef-

fective power gap suggests operational losses or limitations that 

could be optimized through maintenance, equipment modernization, 

and efficient dispatch management. 

 

Geographic data 

Table 3 shows generation units are concentrated in Manabí (24 

units), contributing the highest nominal capacity despite a 9.01% ef-

fective capacity gap. El Oro follows with 281.36 MW nominal ca-

pacity, while Guayas ranks third but shows 15.15% effective capac-

ity loss, suggesting infrastructure inefficiencies. 
 
Table 3. Geographical allocation of electricity generation units across the coastal region 

Province Units Nominal 

Power 

[MW] 

Effective 

Power 

[MW] 

Non-Op-

erational 

Capacity 

Percentage 

[%] 
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Guayas 43 225.12 191.01 15.15 

Manabí 25 1,234.44 1,132.18 8.28 

El Oro 14 281.36 255.60 9.16 

Santo Domingo 7 255.35 255.35 0.00 

Los Ríos 32 105.17 96.70 8.05 

Santa Elena 2 131.80 105.03 20.31 

Esmeraldas 16 243.20 217.50 10.57 

 
Table 4. Distribution of generation plants in the region by feedstock type 

Feedstock Units Nominal 

Power [MW] 

Effective 

Power [MW] 

Non-Opera-

tional Capac-

ity [%] 

Fuel Oil 78 995.22 893.75 10.20 

Natural Gas 8 275.36 249.60 9.36 

Diesel 25 553.96 465.20 16.02 

Waste 2 114.50 108.80 4.98 

Hydraulic 14 525.92 524.55 0.26 

Solar 12 11.48 11.47 0.09 

 

Feedstock Distribution 

Table 4 reveals Fuel Oil dominates the coastal region with 78 plants 

providing 995.22 MW nominal capacity. Diesel follows with 553.96 

MW, while Natural Gas (8 units) contributes 275.36 MW with 

9.36% non-operational capacity. Fossil fuels (Fuel Oil, Diesel, Nat-

ural Gas) dominate installed capacity but show operational vulnera-

bilities, whereas renewables (Hydraulic and Solar) demonstrate 

higher productivity despite lower total capacity share. 

 

Forced Outage Rates 

System modeling used standard FOR data from [16], selected ac-

cording to each plant's fundamental characteristics (installed nomi-

nal capacity and fuel type). Table 5 presents these values. Compar-

ative analysis between Tables 4 and 5 shows higher FOR values cor-

relate with greater capacity gaps: Diesel (18.41%) and small Fuel 

Oil units (16.01%) exhibit significant effective capacity reductions 
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(465.2 MW vs 553.96 MW for Diesel; 793.75 MW vs 895.22 MW 

for Fuel Oil). Hydropower plants maintain near-equivalent nomi-

nal/effective capacity despite FOR values of 10.63%-17.88% for 

smaller units. 
 

Table 5. FOR values categorized by generation unit technical parameters 

Generator Category Classification [MW] Units FOR 

Hydro All sizes 11 10.63% 

Hydro 001-029 3 17.88% 

Fossil Oil Primary 001-099 42 16.01% 

Fossil Oil Primary 100-199 35 2.49% 

Fossil Gas Primary 100-200 8 15.36% 

Fossil All Fuel Types 001-099 2 18.10% 

Diesel All sizes 25 18.41% 

Solar All sizes 12 68.00% 

Coastal Region Energy Demand 

Reliability assessment requires specific regional demand data. Nine 

distribution business units serve the coastal region: CNEL-

Guayaquil, CNEL-Guayas Los Ríos, CNEL-Manabí, CNEL-El Oro, 

CNEL-Milagro, CNEL-Sta. Elena, CNEL-Sto. Domingo, CNEL-

Esmeraldas and CNEL-Los Ríos, collectively distributing 57.22% 

of national demand. 

From the presented data, it can be calculated that the region's total 

annual energy demand is 13,819.07 [GWh]. As shown in Fig. 1, the 

region's peak energy demand occurs in May with 2,901.82 [GWh], 

while the lowest demand is recorded in February at 2,360.71 [GWh]. 
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Table 6. Electricity Consumption Data of Ecuador 

 

 

 

           Table 7. Electricity Consumption Data of Ecuador 

 

 

 

 

 

Month Electric Energy Demand (GWh) Load Factor (%) 

JAN 2,574.80 75.63 

FEB 2,360.71 78.70 

MAR 2,661.20 79.18 

APR 2,608.99 79.96 

MAY 2,901.82 83.30 

JUN 2,759.45 84.53 

JUL 2,859.05 84.31 

AUG 2,703.78 79.67 

SEP 2,608.48 77.56 

OCT 2,685.49 78.18 

NOV 2,532.68 75.94 

DEC 2,646.44 73.94 

TOTAL 31,903.26 75.70 

Fig.  1 Load Duration Curve 

Fig.  2 Electric power demand profile of the littoral zone 
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Reliability assessment of power systems 

Power system reliability refers to a network's ability to maintain 

electricity supply within acceptable risk thresholds of service inter-

ruption. Reliability and risk are inversely related concepts: mitigat-

ing supply shortage risks directly enhances system reliability [17]. 

This encompasses the system's comprehensive capability to con-

tinuously meet user requirements through uninterrupted power de-

livery while maintaining service quality standards. The concept ex-

tends beyond mere supply continuity to incorporate critical dimen-

sions of power quality, operational stability, and system resilience 

[18]. 

Power system reliability assessment can be conducted through 

multiple analytical approaches: probabilistic metrics, which model 

the stochastic nature of system failures and contingencies; descrip-

tive statistics, quantifying historical performance patterns; and de-

terministic criteria, defining specific design and operational thresh-

olds [19], [20]. 

Level 1 Hierarchical Reliability Assessment 

The assessment of power generation system adequacy focuses on 

evaluating the complete generation fleet's capacity to satisfy the sys-

tem's aggregated demand. This analysis deliberately excludes trans-

mission and distribution network constraints that might affect power 

delivery to end consumers, as shown at the model in Fig. 1.  

The core objective is to determine whether installed generation 

capacity sufficiently covers projected consumer demand while ac-

counting for critical factors such as generator availability, variability 

in primary energy resources, and demand fluctuations [4]. 

This hierarchical level employs probabilistic methods to quantify 

generation adequacy risks through reliability indices like LOLE and 

EENS. The assessment models the entire system as a single bus with 

aggregated load, assuming all generation resources are fully dis-

patchable. It serves as the fundamental building block for more com-

prehensive reliability evaluations at higher hierarchical levels (II 

and III) [21]. 
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Availability and Forced Outage Rate 

Availability represents the probability that a generating unit will be 

operational at a randomly selected future time, while the FOR 

measures the percentage of time a unit is unavailable due to unex-

pected issues or failures. A lower FOR indicates better reliability. 

We can determine a system's availability through its FOR value by 

the equation (1) [22], [23]. 
 

                               Availability = 1 - FOR.                                            (1) 

  

It is important to note that the FOR is not a direct indicator of 

system reliability, as it does not account for factors such as the fre-

quency of failures or their impact on generation capacity. Instead, it 

focuses on the relationship between operating times and unplanned 

downtime.  

This metric is widely used in the energy industry to assess opera-

tional efficiency and the maintainability of generating units, as well 

as to plan predictive and corrective maintenance strategies [24], 

[25]. 

Loss of Load Probability 

LOLP is a key indicator in assessing the reliability of electric 

power systems. This metric quantifies the probability that system 

demand will exceed available generation capacity over a given pe-

riod, potentially resulting in an interruption of power supply [26], 

[27]. 

Despite its name, LOLP does not strictly represent probability in 

the conventional mathematical sense. In practice, it is expressed as 

a statistical measure indicating the percentage of time (typically in 

hours or days) during a specific period when system load is expected 

to exceed available generation capacity, considering generator fail-

ure rates [26]. 

Although commonly used, LOLP has limitations: it does not ac-

count for the magnitude or duration of potential power outages, nor 

does it consider emergency support from other regions or contingen-

cies not modeled in traditional calculations. This approach enables 
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a more accurate assessment of generation system adequacy by con-

sidering both demand variability and the stochastic nature of gener-

ation equipment failures [28]. 

To calculate this indicator, Equation (2) is used, where n is the 

total number of system states considered, Pᵢ is the probability for 

each state i, and tᵢ is the computed state duration. 
 

        𝐿𝑂𝐿𝑃 = ∑ 𝑃𝑖 ∗ 𝑡𝑖
𝑛
𝑖=1                                                        (2) 

Loss of Load Expectation 

The LOLE index is a metric used to assess the adequacy of power 

generation capacity in relation to future demand. LOLE quantifies 

the expected number of hours or days in a specific period (typically 

one year) during which peak demand will exceed the available gen-

eration capacity. This index provides a probabilistic measure of 

electric supply shortfall risk, considering both demand variability 

and the stochastic availability of generation resources [25], [28]. 

Unlike LOLP, which represents an instantaneous probability, 

LOLE offers a cumulative perspective of supply shortage risk over 

time. It is calculated by combining the generation capacity model 

(which includes operational characteristics and availability of gen-

erating units) with the system load model [29], [30]. 

LOLE is typically expressed in hours/year or days/year and can 

be derived from LOLP depending on analysis depth, as shown in 

Equation 3. A widely used standard in European countries specifies 

that for any power system planning, the LOLE should not exceed 

0.1 days/year or 2.4 hours/year [31], [32]. 
 

𝐿𝑂𝐿𝐸 = 𝐿𝑂𝐿𝑃 ∗
8760 ℎ𝑜𝑟𝑎𝑠

𝑎ñ𝑜
                                           (3) 

 

A crucial point requiring clarification is the general interpretation 

of LOLE. This metric does not measure either the total duration of 

generation shortfalls or the number of system adequacy events. Ra-

ther, it represents a count of expected event periods per horizon - 

where 'horizon' refers to the timeframe during which adequacy risk 

is reported, and an 'event period' is a time interval during which a 
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generation deficiency event may occur at any moment in the system 

[33]. 

Energy Not Supplied 

The Energy Not Supplied (ENS) index is a reliability metric that 

quantifies the amount of electrical energy failing to reach consumers 

due to system failures or interruptions, with standard units of mega-

watt-hour (MWh). 
 

𝐸𝑁𝑆𝑖 = 𝑃𝑜𝑡𝑒𝑛𝑐𝑖𝑎𝑖 ∗
𝑡𝑖∗8760 

2
                                        (4) 

Expected Energy not Supplied.  

EENS quantifies the average amount of energy not delivered to con-

sumers during a specific period (typically one year) due to power 

supply interruptions. EENS is typically expressed in energy units 

such as megawatt-hours (MWh) or gigawatt-hours (GWh) and pro-

vides a measure of system failures' impact in terms of undelivered 

energy [34], [3]. 

EENS is determined by multiplying load data by the total availa-

ble capacity and production units' energy shortfall. This indicator 

combines both the probability and potential magnitude of any supply 

deficit, offering a more comprehensive view of system reliability 

compared to other metrics. The calculation also incorporates meth-

ods that account for factors such as generator availability, load var-

iability, and system constraints [35], [36]. 

This indicator can be quantified through the evaluated value of 

unsupplied energy as shown in Equation 4 (expressed in 

[MWh/year]), resulting in the expression presented in Equation 5. 

 
𝐸𝐸𝑁𝑆 = 𝐸𝑁𝑆𝑖 ∗ 𝑃𝑖                                                    (4) 

 

According to the EENS evaluation criteria established by the 

NEM (National Electricity Market), it is recommended that the an-

nual unsupplied energy should not exceed 0.002% of the total annual 

energy consumption in the assessed region. This highlights the 



 

Evaluation of Reliability Metrics in Coastal Ecuador 

370 

 

approach of linking system reliability with its cost-benefit projection 

[23], [2], [32]. 

Energy Reliability Index 

The Energy Reliability Index is a probabilistic indicator used in the 

evaluation of electrical systems to measure the proportion of energy 

effectively not supplied relative to the total energy demanded by the 

system. It is defined as the complementary function of the EENS) 

index, which represents the expected amount of energy that cannot 

be delivered due to insufficient installed capacity or system inter-

ruptions (equation 5) [37]. 
 

𝐸𝐼𝑅 = 1 −
𝐸𝐸𝑁𝑆

𝐸
                                                      (5) 

 

Where 𝐸 is the total energy demanded during the analyzed period. 

A value of the EIR close to 1 indicates a high level of reliability, as 

most of the energy demanded is delivered without interruptions. 

Conversely, lower values highlight operational deficiencies in the 

system [38]. 

Computational modeling 

A Python algorithm processed all 139 generation units through: 

 
                               𝑃𝑖 = (𝑛

𝑘
)𝑈𝑘 ∗ 𝐴𝑛−𝑘                                               (6) 

 

Where 𝑃𝑖 is state probability, 𝑈 availability, and 𝐴 forced outage 

rate. The model generated 2,048 unique system states for evaluation. 

3 Existing Research 

In this section, we will compile and analyze various research stud-

ies on reliability indicators in Ecuador, focusing on the relevant re-

sults obtained by these authors and highlighting the methodologies 
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used chronologically for studying power system reliability indica-

tors.  

It is important to note that there are no previous reliability studies 

with a regional focus in the country. 

The study conducted in [3] analyzed the reliability of Ecuador's 

power generation system through stochastic modeling of failures 

and determination of necessary reserves to ensure supply.  

The methodology included calculations of failure and repair rates 

based on historical data (2002-2005), using exponential distribu-

tions to model operating and failure times, and evaluated indicators 

such as LOLP and EENS. 

Results in [3] revealed significant reliability variations across de-

mand periods. For base demand (1,500 MW), LOLP was 0.12254 

with EENS of 20.13 GWh, while medium demand (1,800 MW) 

showed increased values of 0.329104 and 60.06 GWh respectively.  

Existing reserves (200 MW base, 150 MW medium, and 250 MW 

peak) proved insufficient during medium demand periods, requiring 

an additional 50 MW to achieve desired reliability levels. 

Similarly, [4] conducted a study analyzing Ecuador's power gen-

eration reliability through probabilistic models and recursive algo-

rithms, considering three key demand scenarios (minimum, me-

dium, and maximum).  

Using operational data from CENACE and Markov-based failure 

parameters to simulate hydroelectric and thermal unit behavior, it 

recommended increasing operating reserves to 5.16% for medium 

demand and 6.2% for peak demand, plus implementing periodic 

simulations updating initial failure probabilities.  

The study emphasized limiting consecutive thermal unit startups, 

as excessive cycling reduced lifespan and increased failure proba-

bility by 18-22% according to models. 

In [25], generation system reliability was evaluated using the 

LOLE index through a probabilistic approach, focusing on capacity 

outage tables via state enumeration methods.  

The study considered both identical and non-identical generators 

with varying forced outage rates (FOR). The MATLAB-

implemented mathematical model analyzed variable load scenarios 
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and expansion plans to ensure systems met a maximum risk criterion 

of 0.15 days/year. 

Results from [25] demonstrated LOLE increased significantly 

with higher FOR values and loads approaching 100% installed ca-

pacity. For example, a system with six identical 40 MW generators 

(FOR=0.07) under 100%-85% linear load showed LOLE of 16.99 

days/year, while reducing load to 65% decreased this to 8.40 

days/year.  

Heterogeneous systems (25-50 MW generators) exhibited similar 

variation: with FOR=0.05, LOLE decreased from 13.28 days/year 

(100%-85% load) to 7.21 days/year (100%-65% load), highlighting 

the index's sensitivity to available capacity and operational stability. 

Another study [27] presented a general approach analyzing gen-

eration system reliability with non-conventional renewable energy 

(NCRE) integration, specifically wind power, using the IEEE New 

England test system. Results showed that despite total installed ca-

pacity (7,050 MW) exceeding peak demand (6,097.1 MW), integrat-

ing 25% wind power (1,520 MW) yielded 10% LOLP - significantly 

higher than NERC's 0.0274% standard. 

In conclusion, these studies employed various reliability analysis 

approaches, primarily probabilistic models, evaluating mainly 

through LOLP, LOLE and EENS indicators following NERC rec-

ommendations. Results revealed concerning reliability in Ecuador's 

power sector while proposing adequate solutions.  

Although these studies span many years, recent research has fo-

cused on broader areas. This methodological variability demon-

strates the sector's need for diversified studies addressing reliability 

challenges, thus establishing foundations for more specific research 

like this generation reliability study focused on the coastal region. 
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4 Results And Discussion 

Coastal Region Power System Reliability Assessment 

Python-based computation of Level 1 reliability indices assessed 

system component failure probabilities using probabilistic ap-

proaches. The implementation leveraged NumPy and Math libraries 

for data processing, operational state modeling, and computation of 

standard reliability metrics (LOLE, LOLP, EENS, EIR). 

 

Power Demand Modeling 

To evaluate generation capacity adequacy in this study, the demand 

model must be calibrated to delivered power units. These values are 

calculated using monthly power factors and hour counts, yielding 

the results presented in Table 4. 

The regional cumulative demand model, derived from the col-

lected data, serves as the foundation for system assessment. Table 8 

indicates 1,859.05 MW peak demand (time 0) and 1,497.66 MW 

minimum demand (time 1). These extremes were discretized into 50 

MW intervals to generate the modeled values presented in Table 7. 
 

 

Table 8. Power demand of the coastal region 

Month Power Demand [MW] 

JAN 1,497.66 

FEB 1,581.96 

MAR 1,620.57 

APR 1,657.91 

MAY 1,859.05 

JUN 1,853.74 

JUL 1,853.85 

AUG 1,656.69 

SEP 1,607.83 

OCT 1,614.71 



 

Evaluation of Reliability Metrics in Coastal Ecuador 

374 

 

NOV 1,528.50 

DEC 1,504.93 

TOTAL 13,819.07 

 

Table 9. Power model of the coastal region 

Power [MW] Time [p.u] 

1859,05 0 

1809,05 0,14 

1759,05 0,28 

1709,05 0,42 

1659,05 0,55 

1609,05 0,69 

1559,05 0,83 

1509,05 0,97 

1497,66 1 

 

The values in Table 8 enable the derivation of the load duration 

curve for coastal region reliability assessment, a critical component 

for determining system adequacy through LOLP calculations across 

all operational scenarios. 
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Evaluation of Loss of Load Probability and Loss of Load Expec-

tation 

The system's main reliability indicators are obtained (Table 9), 

showing a LOLE value indicating 582.08 expected hours per year 

where the system may lack sufficient capacity to meet demand. 

The probability of these adequacy events is quantified by LOLP 

at 6.64% during the specified period. When comparing this LOLE 

value to the reliability standard of 2.4 hours/year (indicating a highly 

reliable system), it becomes evident that the coastal region's gener-

ation supply reliability is critically low, falling short by a significant 

margin. 
 

Table 10. Level 1 reliability assessment of Ecuador's litoral power system 

Index Result Recommended Value Units 

LOLP 0.0664 - p.u. 

LOLE 582.08 2.4 hours/year 

EENS 502.257 - GWh/year 

EIR 0.96 0.99 p.u. 

 

EIR and EENS Indicators Assessment 

Given the coastal region's total energy demand of 13,819.07 

GWh/year (see Table 6) and an EENS of 502.257 GWh/year (Table 

9), the percentage ratio reveals that 3.63% of required energy will 

fail to be delivered. This drastically exceeds the NEM's recom-

mended reliability threshold of 0.002% ENS, indicating severe sys-

tem inadequacy. 
 

 

Fig.  3 Load Duration Curve 
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Table 11. Litoral Region Electricity Tariff Schedule 

Voltage Level Rate Units 

201-250 0.099 USD/kWh 

 

Based on the residential tariff established in [39], the estimated 

economic loss amounts to 49.723 [MUSD]. 

Multi-Scenario Power System Adequacy Analysis 

Reliability Analysis with Nominal vs Effective Capacity 

Both scenarios were analyzed by characterizing the system using its 

nominal and effective capacities. It is well understood that an elec-

tric system does not typically operate at its maximum (nominal) ca-

pacity due to various operational constraints. However, it is im-

portant to assess how reliability indicators behave under both con-

ditions. 

Under improved supply conditions (nominal capacity), there is a 

significant enhancement in reliability metrics such as LOLE, which 

is estimated at 41.68 hours per year during which adequacy events 

may occur. Furthermore, the probability of such events is consider-

ably reduced, with a LOLP of 0.48%. 

 

System Reliability under Contingency Conditions 

This analysis compares two distinct scenarios. Scenario 1 excludes 

hydropower-based generation plants, whereas Scenario 2 excludes 

all renewable energy sources, resulting in a system composed solely 

of non-renewable generation technologies. 

The reliability of the system is evaluated under the assumption 

that no renewable energy projects were implemented in the coastal 

region.  

In Scenario 1, the absence of hydropower generation results in a 

reduction of 524.55 MW in available capacity, leading to an esti-

mated 7,302.64 hours per year during which adequacy events may 

occur.  
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In Scenario 2, with the complete exclusion of renewable energy 

sources, the system is effectively unable to meet the region’s total 

electricity demand, rendering it vulnerable to reliability events 

throughout the entire year. 

 

 

 
 

 

 

0.0664

0.0048

0.8336

0.9831

0 0.2 0.4 0.6 0.8 1 1.2
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LOLP

Fig.  3 LOLP Results Comparison for Contingency Cases 
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Generation Planning Reliability Assessment for the Coastal 

Region 

As identified in the earlier section, the system's reserve capacity 

constitutes a critical vulnerability in meeting the coastal region's de-

mand. This section therefore focuses on incorporating both recently 

commissioned projects and planned future developments per [40]. 

Based on the coastal region's demand projections from [41], en-

ergy requirements are forecast to reach 23,580.44 GWh by 2027—

a 70.6% increase over 2023 levels. This growth trajectory reveals 

critical inadequacies in the current Plan Maestro de Electrificación 

(PME) project pipeline, which was originally scheduled for comple-

tion by 2022 under the previous administration [42]. 

A scenario-based load deficit analysis (Table 8) compares system 

adequacy under three critical conditions. 
 

582.08

41.68

7302.64

8612

0 2000 4000 6000 8000 10000

Baseline

Nominal

Scenario 1

Scenario 2

hours/year

LOLE

Fig.  4 LOLE Results Comparison for Contingency Cases 
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Table 12. Parameters for reliability scenario analysis 

Parameter Scenario 3 Scenario 4 Scenario 5 

Generation  

Basis 

Existing projects 

+ PME 

Existing projects + 

PME 

Existing PME projects + 

300 MW natural gas 

block 

Demand  

Considered 

2023 peak load 

(1,859.05 MW) 

2027 projected load 

(2,691.83 MW) [41] 

2027 projected load 

(2,691.83 MW) [41] 

 

 
 

 

 

0.0664

0.0005

0.5122

0.2154

0 0.1 0.2 0.3 0.4 0.5 0.6
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Fig.  5 LOLP results comparison for PME cases 
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The evaluated scenarios demonstrate that, as shown in Fig. 4 and 

6, full implementation of the Plan Maestro de Electrificación (PME) 

projects would significantly enhance the coastal region's reliability, 

reducing LOLE from 582.08 hours/year (current) to 4.15 hours/year 

– achieving NERC compliance (standard: 2.4 hours/year). 

However, with documented delays in generation projects and pro-

jected mid-term demand growth (4.2% CAGR [41]), reliability met-

rics are unlikely to improve in the coming years without interven-

tion. 

5 Conclusions 

The coastal region's generation profile is characterized by a pre-

dominantly thermal-based energy matrix, primarily composed of 

Fuel Oil-fired internal combustion engines (ICEs). However, these 

systems exhibit high operational inefficiencies. 

An assessment of Level 1 reliability indicators reveals a critical 

generation capacity shortfall, failing to meet regional demand. The 

calculated LOLE significantly exceeds recommended benchmarks, 

while the EENS surpasses NERC reliability standards. 

582.08

4.15

4487.08

1886.98

0 1000 2000 3000 4000 5000

Baseline

Scenario 3

Scenario 4

Scenario 5

hours/year

LOLE

Fig.  6 LOLP results comparison for PME cases 
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Contingency scenario analysis demonstrates that the absence of 

renewable generation assets would substantially degrade system re-

liability. Despite their limited penetration in the regional energy ma-

trix, renewable plants play a crucial role in maintaining operational 

reliability. 

To improve the reliability of the electrical system in the coastal 

region, it is crucial to implement the projects planned in the 2023-

2032 PME (Plan Maestro de Electricidad) or even restructure it with 

new generation projects. Additionally, it is proposed to consider the 

implementation of predictive maintenance projects in the various 

existing generation plants in the region. 
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