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Abstract

This study addresses the energy crisis in Ecuador’s Coastal region,
hypothesizing a structural insufficiency in the regional power sys-
tem’s generation capacity. The research proposes an analysis of
Level 1 reliability indices to identify critical points within the elec-
trical system and prioritize strategic infrastructure investments. The
methodology integrated a review of technical data provided by
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CENACE (National Energy Control Center) and probabilistic mod-
eling using Python, assessing the relationship between installed ca-
pacity, real demand, and operational vulnerabilities. By applying
these indices, risks such as the system’s loss of load probability and
its economic impact were quantified, providing a technical founda-
tion for transitioning toward a diversified and efficient energy ma-
trix. Based on the results, a power system improvement framework
was proposed, focusing on modernizing thermal plants, expanding
renewable energy integration, and implementing targeted invest-
ment policies in underserved areas.

Keywords: Power system reliability, LOLE, generation ade-
quacy, power system planning.

1 Introduction

Recent years, Ecuador has faced a growing energy challenge
marked by a steady increase in electricity consumption especially in
the coastal region, which represents the highest share of national
electricity demand [1]. This surge in consumption has contributed to
a persistent energy crisis, leading to frequent disruptions in the in-
terconnected power system and intermittent electricity supply across
multiple provinces. The structural fragility of the national energy
matrix has placed pressure on thermal generation, which dominates
the coastal zone with nearly 79.9% of installed capacity [2].

To fully understand and address these challenges, quantitative
analysis of power system reliability has become essential. Reliabil-
ity evaluation plays a crucial role in planning and operation, as it not
only reflects the system’s ability to meet demand under uncertain
conditions but also influences operational economics and user satis-
faction [3]. Moreover, reliability indices provide decision-makers
with key insights for long-term planning, infrastructure investment,
and risk mitigation strategies [4].
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While previous studies have explored Ecuador’s national electri-
cal grid and its overall vulnerability [5], [6] there remains a lack of
detailed analyses focusing on regional systems particularly in
coastal zones where energy supply risks are heightened by environ-
mental variability and resource intermittency. The integration of re-
newable energy in these areas, including solar, wind, and tidal
sources, holds promise for enhancing system sustainability, but also
introduces significant uncertainty in generation patterns.

Level 1 reliability metrics such as Loss of Load Probability
(LOLP), Loss of Load Expectation (LOLE), and Expected Energy
Not Supplied (EENS) offer a standardized framework to assess the
performance and security of generation systems. These indices are
critical for evaluating the probability and magnitude of power sup-
ply interruptions in systems with high penetration of variable renew-
ables [7]. In the Ecuadorian coastal context where hydroelectric re-
sources are geographically limited and seasonally unreliable these
metrics are invaluable for understanding system behavior and plan-
ning appropriate mitigation strategies.

Coastal generation systems are exposed to dynamic conditions
due to the variability of natural energy inputs, such as wind intensity,
solar irradiation, and tidal forces. These fluctuations can create chal-
lenges for grid balancing, especially when legacy infrastructure is
not designed to accommodate intermittent resources. Moreover, the
operational integration of renewable sources requires advanced grid
monitoring and control capabilities to ensure security margins and
minimize the risk of outages [8], [9].

This study presents a comprehensive technical evaluation of
Level 1 reliability metrics in Ecuador’s coastal power generation
system. Using a combination of probabilistic modeling approaches
including Monte Carlo simulation and Markov chain analysis, the
paper explores system vulnerability under different operating con-
ditions and generation profiles. These methods have been widely
recognized for their ability to simulate the stochastic behavior of re-
newable energy sources and component failures [10], [11]and have
demonstrated effectiveness in applications such as the IEEE 39-bus
test system with integrated photovoltaic and wind units [12].
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Markov models further enhance the understanding of system dy-
namics by modeling availability patterns for hybrid energy sources.
Studies have demonstrated their utility in the design and evaluation
of microgrids, especially in coastal regions where hybrid configura-
tions improve reliability and enable distributed control

Real-world case studies continue to highlight the value of these
methodologies. For instance, a study in Washington State assessed
the impact of tidal energy integration on feeder-level reliability and
found significant improvements in resilience during high-impact,
low-frequency events [13]. Similarly, research focused on the Santa
Elena region of Ecuador demonstrated that the addition of solar pho-
tovoltaic systems can effectively complement hydro resources and
reduce technical losses in coastal grids [10], [14]

Given the increasing exposure of coastal systems to climate-re-
lated stressors, the concepts of resilience and robustness are gaining
attention in energy planning. The adoption of microgrids and hybrid
renewable systems has been proposed to improve supply continuity
and isolate failures during disturbances, contributing to the long-
term sustainability of vulnerable coastal zones [15].

This paper aims to fill the gap in regional reliability studies by
providing a detailed analysis of Level 1 reliability metrics in Ecua-
dor’s coastal power generation sector. The findings are intended to
support engineers, operators, and policymakers in developing more
resilient energy strategies that accommodate the realities of renew-
able variability and growing demand.

2 Methodology

Data Collection

Installed Generation Unit Data

The energy infrastructure of Ecuador's coastal region comprises a
combination of renewable and non-renewable electricity generation
technologies, geographically distributed across different provinces
and cantons. The collected data covers 139 generation units from
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various plant types (hydraulic, thermal, photovoltaic, and biomass),
including information on installed capacity, effective capacity ob-
tained from [1], and FOR values from [16]. This analysis aims to
identify technical and geographical patterns relevant to the reliabil-
ity indicators to be obtained in this research.

Table 1. Existing plants in the coastal region

Plant Quan- Total Nominal Total Effective %

Type tity Power (MW) Power (MW) Share
Thermal 111 1,824.54 1,608.55 79.86
Hydraulic 14 525.92 524.55 10.07
Photovoltaic 12 11.48 11.47 8.63
Biomass 2 114.50 108.80 1.44

As can be seen in Table 1, the distribution of power plants shows
a clear predominance of thermal sources.

Renewable energy sources represent a small portion compared to
fossil fuel-based generation. However, when comparing installed
capacity versus effective capacity, thermal plants show approxi-
mately 11.83% of their available capacity remains undispatchable,
while renewable sources average only 1.77% undispatchable power.

Technical Characterization of Units by Technology

Table 2 details the installed generation units classified by technol-
ogy subtype. The analysis specifically examines the gap between
nominal and effective power across all units.

Internal combustion engine (ICE) technology dominates in quan-
tity, representing 62.59% of total system units. However, this tech-
nology shows the largest discrepancy (12.96%) between installed
and effective capacity.

Table 2. Classification of coastal region power generation units according to energy con-
version technology

Technology Units Nominal Effective Non-Oper-
Power [MW] Power [MW] ational
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Capacity
Percentage
[%]
Reservoir 5 255.20 255.00 3.60
Hydro
Run-of- 9 270.72 269.55 6.47
River
Steam Tur- 7 560.50 526.80 5.04
bine
Gas Tur- 19 746.70 640.60 13.67
bine
Internal 87 631.84 549.95 62.59
Combustion
Engine (ICE)
Photovol- 12 11.48 11.47 8.63
taic
Installed Capacities

With 2,376.44 MW installed capacity and 2,153.37 MW effective
capacity, the regional energy system achieves a 90.61% capacity
factor, indicating efficient utilization of installed resources in most
generation plants regarding dispatch. Nevertheless, the nominal-ef-
fective power gap suggests operational losses or limitations that
could be optimized through maintenance, equipment modernization,
and efficient dispatch management.

Geographic data

Table 3 shows generation units are concentrated in Manabi (24
units), contributing the highest nominal capacity despite a 9.01% ef-
fective capacity gap. El Oro follows with 281.36 MW nominal ca-
pacity, while Guayas ranks third but shows 15.15% effective capac-
ity loss, suggesting infrastructure inefficiencies.

Table 3. Geographical allocation of electricity generation units across the coastal region

Province Units Nominal Effective Non-Op-
Power Power erational
[MW] [MW] Capacity
Percentage
[%o]
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Guayas 43 225.12 191.01 15.15
Manabi 25 1,234.44 1,132.18 8.28
El Oro 14 281.36 255.60 9.16
Santo Domingo 7 255.35 255.35 0.00
Los Rios 32 105.17 96.70 8.05
Santa Elena 2 131.80 105.03 20.31
Esmeraldas 16 243.20 217.50 10.57

Table 4. Distribution of generation plants in the region by feedstock type

Feedstock Units Nominal Effective Non-Opera-
Power [MW] Power [MW] tional Capac-
ity [%]
Fuel Oil 78 995.22 893.75 10.20
Natural Gas 8 275.36 249.60 9.36
Diesel 25 553.96 465.20 16.02
Waste 2 114.50 108.80 4.98
Hydraulic 14 525.92 524.55 0.26
Solar 12 11.48 11.47 0.09

Feedstock Distribution

Table 4 reveals Fuel Oil dominates the coastal region with 78 plants
providing 995.22 MW nominal capacity. Diesel follows with 553.96
MW, while Natural Gas (8 units) contributes 275.36 MW with
9.36% non-operational capacity. Fossil fuels (Fuel Oil, Diesel, Nat-
ural Gas) dominate installed capacity but show operational vulnera-
bilities, whereas renewables (Hydraulic and Solar) demonstrate
higher productivity despite lower total capacity share.

Forced Outage Rates

System modeling used standard FOR data from [16], selected ac-
cording to each plant's fundamental characteristics (installed nomi-
nal capacity and fuel type). Table 5 presents these values. Compar-
ative analysis between Tables 4 and 5 shows higher FOR values cor-
relate with greater capacity gaps: Diesel (18.41%) and small Fuel
Oil units (16.01%) exhibit significant effective capacity reductions
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(465.2 MW vs 553.96 MW for Diesel; 793.75 MW vs 895.22 MW
for Fuel Oil). Hydropower plants maintain near-equivalent nomi-
nal/effective capacity despite FOR values of 10.63%-17.88% for
smaller units.

Table 5. FOR values categorized by generation unit technical parameters

Generator Category Classification [MW] Units FOR
Hydro All sizes 11 10.63%
Hydro 001-029 3 17.88%
Fossil Oil Primary 001-099 42 16.01%
Fossil Oil Primary 100-199 35 2.49%
Fossil Gas Primary 100-200 8 15.36%
Fossil All Fuel Types 001-099 2 18.10%
Diesel All sizes 25 18.41%
Solar All sizes 12 68.00%

Coastal Region Energy Demand

Reliability assessment requires specific regional demand data. Nine
distribution business units serve the coastal region: CNEL-
Guayaquil, CNEL-Guayas Los Rios, CNEL-Manabi, CNEL-EI Oro,
CNEL-Milagro, CNEL-Sta. Elena, CNEL-Sto. Domingo, CNEL-
Esmeraldas and CNEL-Los Rios, collectively distributing 57.22%
of national demand.

From the presented data, it can be calculated that the region's total
annual energy demand is 13,819.07 [GWh]. As shown in Fig. 1, the
region's peak energy demand occurs in May with 2,901.82 [GWh],
while the lowest demand is recorded in February at 2,360.71 [GWh].
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Fig. 1 Load Duration Curve

Fig. 2 Electric power demand profile of the littoral zone

Month Electric Energy Demand (GWh) Load Factor (%)

JAN 2,574.80 75.63
FEB 2,360.71 78.70
MAR 2,661.20 79.18
APR 2,608.99 79.96
MAY 2,901.82 83.30
JUN 2,759.45 84.53
JUL 2,859.05 84.31
AUG 2,703.78 79.67
SEP 2,608.48 77.56
OCT 2,685.49 78.18
NOV 2,532.68 75.94
DEC 2,646.44 73.94
TOTAL 31,903.26 75.70
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Reliability assessment of power systems

Power system reliability refers to a network's ability to maintain
electricity supply within acceptable risk thresholds of service inter-
ruption. Reliability and risk are inversely related concepts: mitigat-
ing supply shortage risks directly enhances system reliability [17].

This encompasses the system's comprehensive capability to con-
tinuously meet user requirements through uninterrupted power de-
livery while maintaining service quality standards. The concept ex-
tends beyond mere supply continuity to incorporate critical dimen-
sions of power quality, operational stability, and system resilience
[18].

Power system reliability assessment can be conducted through
multiple analytical approaches: probabilistic metrics, which model
the stochastic nature of system failures and contingencies; descrip-
tive statistics, quantifying historical performance patterns; and de-
terministic criteria, defining specific design and operational thresh-
olds [19], [20].

Level 1 Hierarchical Reliability Assessment

The assessment of power generation system adequacy focuses on
evaluating the complete generation fleet's capacity to satisfy the sys-
tem's aggregated demand. This analysis deliberately excludes trans-
mission and distribution network constraints that might affect power
delivery to end consumers, as shown at the model in Fig. 1.

The core objective is to determine whether installed generation
capacity sufficiently covers projected consumer demand while ac-
counting for critical factors such as generator availability, variability
in primary energy resources, and demand fluctuations [4].

This hierarchical level employs probabilistic methods to quantify
generation adequacy risks through reliability indices like LOLE and
EENS. The assessment models the entire system as a single bus with
aggregated load, assuming all generation resources are fully dis-
patchable. It serves as the fundamental building block for more com-
prehensive reliability evaluations at higher hierarchical levels (II
and IIT) [21].
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Availability and Forced Outage Rate

Availability represents the probability that a generating unit will be
operational at a randomly selected future time, while the FOR
measures the percentage of time a unit is unavailable due to unex-
pected issues or failures. A lower FOR indicates better reliability.

We can determine a system's availability through its FOR value by
the equation (1) [22], [23].

Availability = 1 - FOR. (1)

It is important to note that the FOR is not a direct indicator of
system reliability, as it does not account for factors such as the fre-
quency of failures or their impact on generation capacity. Instead, it
focuses on the relationship between operating times and unplanned
downtime.

This metric is widely used in the energy industry to assess opera-
tional efficiency and the maintainability of generating units, as well
as to plan predictive and corrective maintenance strategies [24],
[25].

Loss of Load Probability

LOLP is a key indicator in assessing the reliability of electric
power systems. This metric quantifies the probability that system
demand will exceed available generation capacity over a given pe-
riod, potentially resulting in an interruption of power supply [26],
[27].

Despite its name, LOLP does not strictly represent probability in
the conventional mathematical sense. In practice, it is expressed as
a statistical measure indicating the percentage of time (typically in
hours or days) during a specific period when system load is expected
to exceed available generation capacity, considering generator fail-
ure rates [26].

Although commonly used, LOLP has limitations: it does not ac-
count for the magnitude or duration of potential power outages, nor
does it consider emergency support from other regions or contingen-
cies not modeled in traditional calculations. This approach enables
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a more accurate assessment of generation system adequacy by con-
sidering both demand variability and the stochastic nature of gener-
ation equipment failures [28].

To calculate this indicator, Equation (2) is used, where 7 is the
total number of system states considered, P; is the probability for
each state 7, and t; is the computed state duration.

LOLP =¥, P * t; ()

Loss of Load Expectation

The LOLE index is a metric used to assess the adequacy of power
generation capacity in relation to future demand. LOLE quantifies
the expected number of hours or days in a specific period (typically
one year) during which peak demand will exceed the available gen-
eration capacity. This index provides a probabilistic measure of
electric supply shortfall risk, considering both demand variability
and the stochastic availability of generation resources [25], [28].

Unlike LOLP, which represents an instantaneous probability,
LOLE offers a cumulative perspective of supply shortage risk over
time. It is calculated by combining the generation capacity model
(which includes operational characteristics and availability of gen-
erating units) with the system load model [29], [30].

LOLE is typically expressed in hours/year or days/year and can
be derived from LOLP depending on analysis depth, as shown in
Equation 3. A widely used standard in European countries specifies
that for any power system planning, the LOLE should not exceed
0.1 days/year or 2.4 hours/year [31], [32].

LOLE = LOLP *8760horas

A3)

A crucial point requiring clarification is the general interpretation
of LOLE. This metric does not measure either the total duration of
generation shortfalls or the number of system adequacy events. Ra-
ther, it represents a count of expected event periods per horizon -
where 'horizon' refers to the timeframe during which adequacy risk
is reported, and an 'event period' is a time interval during which a
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generation deficiency event may occur at any moment in the system
[33].

Energy Not Supplied

The Energy Not Supplied (ENS) index is a reliability metric that
quantifies the amount of electrical energy failing to reach consumers
due to system failures or interruptions, with standard units of mega-
watt-hour (MWh).

t;+8760

ENS; = Potencia; * 4)

Expected Energy not Supplied.

EENS quantifies the average amount of energy not delivered to con-
sumers during a specific period (typically one year) due to power
supply interruptions. EENS is typically expressed in energy units
such as megawatt-hours (MWh) or gigawatt-hours (GWh) and pro-
vides a measure of system failures' impact in terms of undelivered
energy [34], [3].

EENS is determined by multiplying load data by the total availa-
ble capacity and production units' energy shortfall. This indicator
combines both the probability and potential magnitude of any supply
deficit, offering a more comprehensive view of system reliability
compared to other metrics. The calculation also incorporates meth-
ods that account for factors such as generator availability, load var-
1ability, and system constraints [35], [36].

This indicator can be quantified through the evaluated value of
unsupplied energy as shown in Equation 4 (expressed in
[MWh/year]), resulting in the expression presented in Equation 5.

EENS = ENS; * P, (4)

According to the EENS evaluation criteria established by the
NEM (National Electricity Market), it is recommended that the an-
nual unsupplied energy should not exceed 0.002% of the total annual
energy consumption in the assessed region. This highlights the
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approach of linking system reliability with its cost-benefit projection
[23], [2], [32].

Energy Reliability Index

The Energy Reliability Index is a probabilistic indicator used in the
evaluation of electrical systems to measure the proportion of energy
effectively not supplied relative to the total energy demanded by the
system. It is defined as the complementary function of the EENS)
index, which represents the expected amount of energy that cannot
be delivered due to insufficient installed capacity or system inter-
ruptions (equation 5) [37].

EIR =1—$ )

Where E is the total energy demanded during the analyzed period.
A value of the EIR close to 1 indicates a high level of reliability, as
most of the energy demanded is delivered without interruptions.
Conversely, lower values highlight operational deficiencies in the
system [38].

Computational modeling

A Python algorithm processed all 139 generation units through:
P, = (Q)Uk » A"k (6)

Where P; is state probability, U availability, and A forced outage
rate. The model generated 2,048 unique system states for evaluation.

3 Existing Research

In this section, we will compile and analyze various research stud-
ies on reliability indicators in Ecuador, focusing on the relevant re-
sults obtained by these authors and highlighting the methodologies
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used chronologically for studying power system reliability indica-
tors.

It is important to note that there are no previous reliability studies
with a regional focus in the country.

The study conducted in [3] analyzed the reliability of Ecuador's
power generation system through stochastic modeling of failures
and determination of necessary reserves to ensure supply.

The methodology included calculations of failure and repair rates
based on historical data (2002-2005), using exponential distribu-
tions to model operating and failure times, and evaluated indicators
such as LOLP and EENS.

Results in [3] revealed significant reliability variations across de-
mand periods. For base demand (1,500 MW), LOLP was 0.12254
with EENS of 20.13 GWh, while medium demand (1,800 MW)
showed increased values of 0.329104 and 60.06 GWh respectively.

Existing reserves (200 MW base, 150 MW medium, and 250 MW
peak) proved insufficient during medium demand periods, requiring
an additional 50 MW to achieve desired reliability levels.

Similarly, [4] conducted a study analyzing Ecuador's power gen-
eration reliability through probabilistic models and recursive algo-
rithms, considering three key demand scenarios (minimum, me-
dium, and maximum).

Using operational data from CENACE and Markov-based failure
parameters to simulate hydroelectric and thermal unit behavior, it
recommended increasing operating reserves to 5.16% for medium
demand and 6.2% for peak demand, plus implementing periodic
simulations updating initial failure probabilities.

The study emphasized limiting consecutive thermal unit startups,
as excessive cycling reduced lifespan and increased failure proba-
bility by 18-22% according to models.

In [25], generation system reliability was evaluated using the
LOLE index through a probabilistic approach, focusing on capacity
outage tables via state enumeration methods.

The study considered both identical and non-identical generators
with varying forced outage rates (FOR). The MATLAB-
implemented mathematical model analyzed variable load scenarios
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and expansion plans to ensure systems met a maximum risk criterion
of 0.15 days/year.

Results from [25] demonstrated LOLE increased significantly
with higher FOR values and loads approaching 100% installed ca-
pacity. For example, a system with six identical 40 MW generators
(FOR=0.07) under 100%-85% linear load showed LOLE of 16.99
days/year, while reducing load to 65% decreased this to 8.40
days/year.

Heterogeneous systems (25-50 MW generators) exhibited similar
variation: with FOR=0.05, LOLE decreased from 13.28 days/year
(100%-85% load) to 7.21 days/year (100%-65% load), highlighting
the index's sensitivity to available capacity and operational stability.

Another study [27] presented a general approach analyzing gen-
eration system reliability with non-conventional renewable energy
(NCRE) integration, specifically wind power, using the IEEE New
England test system. Results showed that despite total installed ca-
pacity (7,050 MW) exceeding peak demand (6,097.1 MW), integrat-
ing 25% wind power (1,520 MW) yielded 10% LOLP - significantly
higher than NERC's 0.0274% standard.

In conclusion, these studies employed various reliability analysis
approaches, primarily probabilistic models, evaluating mainly
through LOLP, LOLE and EENS indicators following NERC rec-
ommendations. Results revealed concerning reliability in Ecuador's
power sector while proposing adequate solutions.

Although these studies span many years, recent research has fo-
cused on broader areas. This methodological variability demon-
strates the sector's need for diversified studies addressing reliability
challenges, thus establishing foundations for more specific research
like this generation reliability study focused on the coastal region.

372



Jean Reyes, Diego Peiia, Fernado Ortega-Loza, Jorge Murillo

4 Results And Discussion

Coastal Region Power System Reliability Assessment

Python-based computation of Level 1 reliability indices assessed
system component failure probabilities using probabilistic ap-
proaches. The implementation leveraged NumPy and Math libraries
for data processing, operational state modeling, and computation of
standard reliability metrics (LOLE, LOLP, EENS, EIR).

Power Demand Modeling

To evaluate generation capacity adequacy in this study, the demand
model must be calibrated to delivered power units. These values are
calculated using monthly power factors and hour counts, yielding
the results presented in Table 4.

The regional cumulative demand model, derived from the col-
lected data, serves as the foundation for system assessment. Table 8
indicates 1,859.05 MW peak demand (time 0) and 1,497.66 MW
minimum demand (time 1). These extremes were discretized into 50
MW intervals to generate the modeled values presented in Table 7.

Table 8. Power demand of the coastal region

Month Power Demand [MW)]
JAN 1,497.66
FEB 1,581.96
MAR 1,620.57
APR 1,657.91
MAY 1,859.05
JUN 1,853.74
JUL 1,853.85
AUG 1,656.69

SEP 1,607.83
OCT 1,614.71
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NOV 1,528.50
DEC 1,504.93
TOTAL 13,819.07

Table 9. Power model of the coastal region
Power [MW] Time [p.u]

1859,05 0

1809,05 0,14
1759,05 0,28
1709,05 0,42
1659,05 0,55
1609,05 0,69
1559,05 0,83
1509,05 0,97
1497,66 1

The values in Table 8 enable the derivation of the load duration
curve for coastal region reliability assessment, a critical component
for determining system adequacy through LOLP calculations across
all operational scenarios.

Curva de demanda acumulada
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Fig. 3 Load Duration Curve

Evaluation of Loss of Load Probability and Loss of Load Expec-
tation

The system's main reliability indicators are obtained (Table 9),
showing a LOLE value indicating 582.08 expected hours per year
where the system may lack sufficient capacity to meet demand.

The probability of these adequacy events is quantified by LOLP
at 6.64% during the specified period. When comparing this LOLE
value to the reliability standard of 2.4 hours/year (indicating a highly
reliable system), it becomes evident that the coastal region's gener-
ation supply reliability is critically low, falling short by a significant
margin.

Table 10. Level [ reliability assessment of Ecuador's litoral power system

Index Result Recommended Value Units
LOLP 0.0664 - p.u.
LOLE 582.08 2.4 hours/year
EENS 502.257 - GWh/year
EIR 0.96 0.99 p.u.

EIR and EENS Indicators Assessment

Given the coastal region's total energy demand of 13,819.07
GWh/year (see Table 6) and an EENS of 502.257 GWh/year (Table
9), the percentage ratio reveals that 3.63% of required energy will
fail to be delivered. This drastically exceeds the NEM's recom-
mended reliability threshold of 0.002% ENS, indicating severe sys-
tem inadequacy.
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Table 11. Litoral Region Electricity Tariff Schedule

Voltage Level Rate Units

201-250 0.099 USD/kWh

Based on the residential tariff established in [39], the estimated
economic loss amounts to 49.723 [MUSD].

Multi-Scenario Power System Adequacy Analysis

Reliability Analysis with Nominal vs Effective Capacity

Both scenarios were analyzed by characterizing the system using its
nominal and effective capacities. It is well understood that an elec-
tric system does not typically operate at its maximum (nominal) ca-
pacity due to various operational constraints. However, it is im-
portant to assess how reliability indicators behave under both con-
ditions.

Under improved supply conditions (nominal capacity), there is a
significant enhancement in reliability metrics such as LOLE, which
is estimated at 41.68 hours per year during which adequacy events
may occur. Furthermore, the probability of such events is consider-
ably reduced, with a LOLP of 0.48%.

System Reliability under Contingency Conditions

This analysis compares two distinct scenarios. Scenario 1 excludes
hydropower-based generation plants, whereas Scenario 2 excludes
all renewable energy sources, resulting in a system composed solely
of non-renewable generation technologies.

The reliability of the system is evaluated under the assumption
that no renewable energy projects were implemented in the coastal
region.

In Scenario 1, the absence of hydropower generation results in a
reduction of 524.55 MW in available capacity, leading to an esti-
mated 7,302.64 hours per year during which adequacy events may
occur.
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In Scenario 2, with the complete exclusion of renewable energy
sources, the system is effectively unable to meet the region’s total
electricity demand, rendering it vulnerable to reliability events
throughout the entire year.

LOLP

scenaro 2 |
scenaric 1|

Nominal | 0.0048

Baseline i664

0 0.2 0.4 0.6 0.8 1 1.2
p.u.

Fig. 3 LOLP Results Comparison for Contingency Cases
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LOLE
Nominal |41.68
Baseline '2.08
0 2000 4000 6000 8000 10000
hours/year

Fig. 4 LOLE Results Comparison for Contingency Cases

Generation Planning Reliability Assessment for the Coastal
Region

As identified in the earlier section, the system's reserve capacity
constitutes a critical vulnerability in meeting the coastal region's de-
mand. This section therefore focuses on incorporating both recently
commissioned projects and planned future developments per [40].

Based on the coastal region's demand projections from [41], en-
ergy requirements are forecast to reach 23,580.44 GWh by 2027—
a 70.6% increase over 2023 levels. This growth trajectory reveals
critical inadequacies in the current Plan Maestro de Electrificacion
(PME) project pipeline, which was originally scheduled for comple-
tion by 2022 under the previous administration [42].

A scenario-based load deficit analysis (Table 8) compares system
adequacy under three critical conditions.
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Table 12. Parameters for reliability scenario analysis

Parameter Scenario 3 Scenario 4 Scenario 5
. . . . Existing PME projects +
Generation Existing projects Existing projects + 33(1: lll\l/lgw nalt)l::;f ¢ Sas
Basis +PME PME &
block
Demand 2023 peak load 2027 projected load 2027 projected load
Considered (1,859.05 MW) (2,691.83 MW) [41] (2,691.83 MW) [41]

LOLP

Scenario 5

scenario 1|

Scenario 3 0.0005

Baseline i

0 0.1 0.2 0.3 0.4 0.5 0.6

p.u.

Fig. 5 LOLP results comparison for PME cases
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Baseline _
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hours/year

Fig. 6 LOLP results comparison for PME cases

The evaluated scenarios demonstrate that, as shown in Fig. 4 and
6, full implementation of the Plan Maestro de Electrificacion (PME)
projects would significantly enhance the coastal region's reliability,
reducing LOLE from 582.08 hours/year (current) to 4.15 hours/year
— achieving NERC compliance (standard: 2.4 hours/year).

However, with documented delays in generation projects and pro-
jected mid-term demand growth (4.2% CAGR [41]), reliability met-
rics are unlikely to improve in the coming years without interven-
tion.

5 Conclusions

The coastal region's generation profile is characterized by a pre-
dominantly thermal-based energy matrix, primarily composed of
Fuel Oil-fired internal combustion engines (ICEs). However, these
systems exhibit high operational inefficiencies.

An assessment of Level 1 reliability indicators reveals a critical
generation capacity shortfall, failing to meet regional demand. The
calculated LOLE significantly exceeds recommended benchmarks,
while the EENS surpasses NERC reliability standards.
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Contingency scenario analysis demonstrates that the absence of
renewable generation assets would substantially degrade system re-
liability. Despite their limited penetration in the regional energy ma-
trix, renewable plants play a crucial role in maintaining operational
reliability.

To improve the reliability of the electrical system in the coastal
region, it is crucial to implement the projects planned in the 2023-
2032 PME (Plan Maestro de Electricidad) or even restructure it with
new generation projects. Additionally, it is proposed to consider the
implementation of predictive maintenance projects in the various
existing generation plants in the region.

References

[1]  Operador Nacional de Electricidad - CENACE, “Informe
Anual 2023.” Accessed: Jul. 16, 2024. [Online]. Available:
https://www.cenace.gob.ec/wp-content/uploads/down-
loads/2024/04/Parte-1-Informe-Anual-CENACE-2023.pdf

[2] C. Purwaningsih, S. Sarjiya, and Y. S. Wijoyo, “Value of
Loss Load Analysis of Java-Bali System Based on Macro
Economic Data,” Journal FORTEI-JEERI, vol. 1, no. 1, pp.
49-59, Jun. 2020, doi: 10.46962/FORTEIJEERIL.V1I1.7.

[3] A.Narvéez, “Calculo de indices de Confiabilidad del Sistema
de Generacion Ecuatoriano,” Revista Técnica “energia,” vol.
3,no. 1, p. PP. 97-103, Jan. 2007, doi: 10.37116/revistaener-
gia.v3.n1.2007.279.

[4] E. Hemnandez and H. Arcos, “ANALISIS DE
CONFIABILIDAD DEL SISTEMA DE GENERACION
ECUATORIANO EN EL AMBITO DEL CORTO PLAZO,”
Revista Técnica “energia,” no. 3, pp. 69-77, 2007, doi:
https://doi.org/10.37116/revistaenergia.v3.n1.2007.276.

[5] C.Yarramsetty, T. Moger, D. Jena, and V. S. Rao, “Advances
in Composite Power System Reliability Assessment: Trends
and Machine Learning Role,” IEEE Access, 2025, doi:
10.1109/ACCESS.2025.3567464.

381



[9]

[10]

[11]

[12]

[13]

Evaluation of Reliability Metrics in Coastal Ecuador

S. Eryilmaz, 1. Bulanik, and Y. Devrim, “Reliability based
modeling of hybrid solar/wind power system for long term
performance assessment,” Reliab Eng Syst Saf, vol. 209, May
2021, doi: 10.1016/j.ress.2021.107478.

A. Giedraityte, S. Rimkevicius, M. Marciukaitis, V. Radzi-
ukynas, and R. Bakas, “Hybrid Renewable Energy Sys-
tems—A Review of Optimization Approaches and Future
Challenges,” Feb. 01, 2025, Multidisciplinary Digital Pub-
lishing Institute (MDPI). doi: 10.3390/app15041744.

N. Astier and M. Ovaere, “Reliability standards and genera-
tion adequacy assessments for interconnected electricity sys-
tems,” Energy Policy, vol. 168, Sep. 2022, doi: 10.1016/j.en-
pol.2022.113131.

P. Khetrapal, “Distributed generation: A critical review of
technologies, grid integration issues, growth drivers and po-
tential benefits,” Jul. 01, 2020, Diponegoro university Indo-
nesia - Center of Biomass and Renewable Energy (CBIORE).
doi: 10.14710/ijred.9.2.189-205.

C. U. Moreira Sanchez, K. W. Mena Vélez, D. P. Pefia Bane-
gas, and C. S. Laverde Albarracin, “RELIABILITY
ANALYSIS FOR A FEEDER OF AN ELECTRIC POWER
DISTRIBUTION COMPANY IN ECUADOR USING THE
MONTECARLO SIMULATION METHOD,” Ingenieria In-
vestigacion y Desarrollo, vol. 23, no. 1, pp. 43-51, Jun. 2023,
doi: 10.19053/1900771x.v23.n1.2023.15517.

C. Nemes and F. Munteanu, “A PROBABILISTIC MODEL
FOR POWER GENERATION ADEQUACY
EVALUATION,” 2009.

G. Yadav, D. Joshi, L. Gopinath, and M. K. Soni, “Reliability
and Availability Optimization of Smart Microgrid Using Spe-
cific Configuration of Renewable Resources and Considering
Subcomponent Faults,” Energies (Basel), vol. 15, no. 16,
Aug. 2022, doi: 10.3390/en15165994.

A. Moreira, M. Heleno, A. Valenzuela, J. H. Eto, J. Ortega,
and C. Botero, “A Scalable Approach to Large Scale Risk-

382



[14]

[15]

[16]

[17]

[18]

[19]

[20]

Jean Reyes, Diego Peiia, Fernado Ortega-Loza, Jorge Murillo

Averse Distribution Grid Expansion Planning,” Sep. 2022,
doi: 10.1109/TPWRS.2023.3273195.

S. F. Myhre, O. B. Fosso, O. Gjerde, and P. E. Heegaard, “Re-
liability Assessment for Distribution Systems with Embedded
Microgrids,” Nov. 2021, [Online]. Available:
http://arxiv.org/abs/2111.07674

L. Hammer and E. M. Veith, “Towards Designing Robust and
Resilient Hybrid Renewable Energy Systems,” in 2022 IEEE
International Conference on Power Systems and Electrical
Technology, PSET 2022, Institute of Electrical and Electron-
ics  Engineers Inc., 2022, pp. 376-382. doi:
10.1109/PSET56192.2022.10100405.

“NERC (North American Electric Reliability Corporation).”
Accessed: Jan. 12, 2025. [Online]. Available:
https://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx
M. S. ALVAREZ-ALVARADO, D. L. DONALDSON, H.
H. NORIEGA, W. VELASQUEZ, and C. D. RODRIGUEZ-
GALLEGOS, “Power System Reliability and Maintenance
Evolution: A Critical Review and Future Perspectives,” IEEE
Access, vol. 10, pp. 51922-51950, May 2022, doi:
10.1109/ACCESS.2022.3172697.

“Composite Power System Reliability (TR99) | IEEE Power
& Energy Society Resource Center.” Accessed: Dec. 17,
2024. [Online]. Available: https://resourcecenter.ieee-
pes.org/publications/technical-re-

ports/pes tp tr99 amps 102622

C. J. Zapata, “CONFIABILIDAD EN SISTEMAS
ELECTRICOS DE POTENCIA,” Cartago, Jun. 2011. Ac-
cessed: Dec. 20, 2024. [Online].  Available:
https://www.feis.unesp.br/Home/departamentos/engenhari-
aeletrica/lapsee/curso 2011 zapata 2.pdf
IAEA-TECDOC-1670/S, Andalisis Probabilista de Seguridad
de Tratamientos de Radioterapia con Acelerador Lineal. Ma-
drid, 2012. Accessed: Dec. 20, 2024. [Online]. Available:
https://inis.iaea.org/collection/NCLCollectionStore/ Pub-
1ic/43/052/43052652.pdf7r=1

383



[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Evaluation of Reliability Metrics in Coastal Ecuador

J. C. Cepeda and D. G. Colomé, “Evaluacion de la Vulnera-
bilidad del Sistema Eléctrico de Potencia en Tiempo Real
usando Tecnologia de Medicion Sincrofasorial,” Revista Téc-
nica Energia, pp- 91-101, 2014, doi:
DOI:10.37116/revistaenergia.v10.n1.2014.103.

S. Garip, S. Ozdemir, and N. Altin, “Power system reliability
assessment - A review on analysis and evaluation methods,”
Journal of Energy Systems, vol. 6, no. 3, pp. 401419, 2022,
doi: 10.30521/JES.1099618.

W. Widjonarko, A. Saleh, W. M. Utomo, S. Omar, and M. L.
Nafi, “Reliability Analysis of a Micro Hydro Power Plants
System at Lombok with Expected Energy Not Supplied
Method,” International Energy Journal, vol. 24, no. 1, Feb.
2024, Accessed: Feb. 24, 2025. [Online]. Available:
http://www.rericjournal.ait.ac.th/index.php/reric/arti-
cle/view/3006

“IEEE Std 762 TM-2006 IEEE Standard Definitions for Use
in Reporting Electric Generating Unit Reliability, Availabil-
ity, and Productivity,” Mar. 2007.

D. Asencio Coéndor, “Evaluacién de la confiabilidad de gene-
racion mediante el indice de pérdida esperada de carga
(LOLE) usando una formulacion probabilistica,” Quito, Dec.
2020. Accessed: Dec. 20, 2024. [Online]. Available:
http://dspace.ups.edu.ec/handle/123456789/19572

M. Cepin, Assessment of Power System Reliability: Methods
and Applications. London: Springer, 2011. doi: 10.1007/978-
0-85729-688-7.

V. Cérdenas, D. Echeverria, and J. Cepeda, “Analisis de Con-
fiabilidad de la Generacién Considerando el Ingreso de Ener-
gias Renovables No Convencionales en los Sistemas de Po-
tencia,” Revista Técnica “energia,” no. 11, pp. 101-107,
Nov. 2015.

V. Fuentes Morales and O. Duarte Moya, “Evaluacion me-
diante enumeracion de estados de la confiabilidad del Sistema
Interconectado del Norte Grande de Chile (SING) State enu-
meration approach in reliability assessment of the Chilean far

384



[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Jean Reyes, Diego Peiia, Fernado Ortega-Loza, Jorge Murillo

north power system (SING),” Revista chilena de ingenieria,
pp- 292-306.

F. Jurado, E. Sanchez, A. Lozano, and J. Razo, “Analisis de
la confiabilidad energética en estudios de suficiencia en el
mercado restructurado parte 1,” Revista de Andlisis Cuantita-
tivo y Estadistico, no. 3, pp. 1-13, Mar. 2016.

G. Slipac, M. Zeljko, and D. Sljivac, “Importance of reliabil-
ity criterion in power system expansion planning,” Energies
(Basel), vol. 12, no. 9, May 2019, doi: 10.3390/en12091714.
M. Nikzad, S. Shams Shamsabad Farahani, M. Tabar, H.
Tourang, and B. Yousefpour, “Calculation of Generation
System Reliability Index: Loss of Load Expectation,” Life Sci
J,vol. 9, pp. 3595-3599, Jan. 2012.

“NERC | Report Title | Report Date I Probabilistic Adequacy
and Measures Technical Reference Report Final,” 2018.

G. Stephen et al., “Clarifying the Interpretation and Use of
the LOLE Resource Adequacy Metric,” 2022. doi:
DOI:10.36227/techrxiv.17054219.v2.

“Identification of Appropriate Generation and System Ade-
quacy Standards for the Internal Electricity Market Final Re-
port,” Luxembourg, 2014. doi: 10.2832/089498.

P. Pradeep and S. Dhanalakshmi, “Evaluation of Reliability
index: Expected Energy Not Served (EENS),” Jan. 2013.

M. A. Alsaedi, H. J. Jabir, B. S. Farhan, and B. M. Albaker,
“Power Systems Reliability Assessment based on Load Shap-
ing Consideration,” TEM Journal, vol. 12, no. 1, pp. 291—
296, Feb. 2023, doi: 10.18421/TEM121-36.

R. Allan and R. Billinton, “Probabilistic Assessment of
Power Systems,” PROCEEDINGS OF THE IEEE, no. 2, pp.
140-162, Feb. 2000.

N. Sanguano Yapo, “Evaluacion de la Confiabilidad del Sis-
tema de Generacion y Transmision Considerando Fallas de
Causa Comun en Lineas y el Método Monte Carlo,” Quito,
Feb. 2021. Accessed: Dec. 20, 2024. [Online]. Available:
http://dspace.ups.edu.ec/handle/123456789/19728

385



[39]

[40]

[41]

[42]

Evaluation of Reliability Metrics in Coastal Ecuador

L. Poma and L. Salazar, “PLIEGO TARIFARIO DEL
SERVICIO PUBLICO DE ENERGIA ELECTRICA ANO
2025,” Quito, Nov. 2024. Accessed: Feb. 24, 2025. [Online].
Available: https://controlelectrico.gob.ec/wp-content/up-
loads/downloads/2024/12/2.-Pliego-Tarifario-del-Servicio-
Publico-de-Energia-Electrcia-ano-2025.pdf

“Plan Maestro de Electricidad — Ministerio de Energia y Mi-
nas.” Accessed: Mar. 04, 2025. [Online]. Available:
https://www.recursosyenergia.gob.ec/plan-maestro-de-elec-
tricidad/

M. MUNOZ GARCIA, “PREDICCION DE LA DEMANDA
ENERGETICA MEDIANTE EL ANALISIS DE
VARIABLES Y MICRO VARIABLES DE LA REGION
COSTA DEL ECUADOR,” Quevedo, 2025.

“Plan Maestro de Electricidad 2018 - 2027,” 2018. Accessed:
Mar. 15, 2025. [Online]. Available:
https://www.celec.gob.ec/transelectric/plan-maestro-de-elec-
tricidad-2012-2022/

386



